3° ANNUAL COURSE OF PHARMACOGENETICS AND PERSONALIZED MEDICINE

Thursday 9th - Friday 10th February 2012 Aula Magna Sapienza University of Roma

The emerging role of epigenetics in personalized medicine: the example of glioma

Monica R Miozzo

Monica R Miozzo, Associate Professor of Medical Genetics,

Università degli Studi di Milano,

Unit of Pathology, Fondazione IRCCS Policlinico, Milano

FONDAZIONE IRCCS CA' GRANDA Ospedale Maggiore Policlinico

EPIGENETICS 'over' the genetic information

Refers to functionally relevant modifications not involving the

nucleotide sequence. It is involved in controlling gene expression.

EPIGENETICS

'Dynamic'

EPIGENETICS 'CpG mthylation'

- CpG islands are short stretches of DNA with high frequency of the CG sequence
- DNA Methylation only occurs at CpG sites located in the promoter regions of genes. Almost all housekeeping genes are associated with at least one CpG island. About 40 % tissue specific genes are associated with islands.

EPIGENETICS 'Chromatin remodelling'

Heterochromatin

Euchromatin

- A tightly packed form of chromatin;
- ✓ At centromeres and telomeres;
- ✓ Contains repetitious sequences;
- ✓ Gene-poor; high DNA methylation;
- ✓ Associated with repressed transcription.

- ✓ A lightly packed form of chromatin;
- ✓ Gene-rich; low DNA methylation
- ✓ At chromosome arms;
- ✓ Associated with active transcription.

EPIGENETICS 'Pathogenetic Mechanisms'

Improper epigenetic marks can result in gene expression changes and lead to disease (inherited and acquired)

EPIGENETICS 'Inherited Disorders'

Table 1. Examples of diseases of chromatin remodelling

Disease	Chromatin defect	Clinical features Autosomal dominant inheritance; mental retardation, abnormal facial features, blunted growth	
Rubinstein-Taybi syndrome (62,70,109)	Heterozygous mutations in CBP		
Fragile X syndrome (62,105)	Hypermethylation of DNA at the <i>FMR</i> 1 and <i>FMR</i> 2 promoters, caused by trinucleotide repeat expansion	A X-linked inheritance; most common inherited form of mental retardation, signs of autistic behaviour macrocephaly, long and narrow face with large ears, macroorchidism, hypotonia	
Coffin-Lowry syndrome (70,106,107)	Mutation in <i>RSK2</i> , which can interact with CREB and CBP and can phosphorylate H3 <i>in vitro</i> (106)	X-linked inheritance; psychomotor retardation, craniofacial and skeletal abnormalities	
Rett syndrome (62,70–72)	Mutations in MeCP2	X-linked, predominantly affecting girls; pervasive developmental disorder associated with arrested brain development, cognitive decline and autistic-like behaviour	
Alpha-thalassemia/mental retardation syndrome, X-linked (ATR-X) (70)	Mutations in the ATRX gene encoding XH2—a member of SWI/SNF family of proteins; defective chromatin remodelling thought to downregulate the α -globin locus	X-linked inheritance; mental retardation, haemolytic anaemia, splenomegaly, facial, skeletal and genital anomalies	
Immunodeficiency- centromeric instability- facial anomalies syndrome (ICF) (70)	Mutations in <i>Dnmt3B</i> ; hypomethylation at centromeric regions of chromosomes 1, 9 and 16	Autosomal recessive; mild mental retardation, marked immunodeficiency, facial anomalies	
Myotonic dystrophy (107)	Abnormal CTG repeat expansion at the 3' UTR of the <i>DMPK</i> gene favours chromatin condensation, affecting the expression of many neighbouring genes	Autosomal dominant; mild mental retardation, myotonia, abnormal cardiac conduction, insulin- dependent diabetes, testicular atrophy, premature balding	
Prader-Willi syndrome (108)	Rare forms caused by abnormal imprinting (DNA methylation) of paternal chromosomal region 15q11–13	Mild mental retardation, endocrine abnormalities	
Angelman syndrome (108)	Rare forms caused by abnormal imprinting (DNA methylation) of maternal chromosomal region 15q11–13	Cortical atrophy, cerebellar dysmyelination, cognitive abnormalities	

CBP, CREB binding protein; CREB, cyclic AMP-response element binding protein; DMPK, DM1 protein kinase; Dnmt3B, DNA methyltransferase 3B; FMR1 mental retardation protein 1; MeCP2, methyl-CpG-binding protein 2; RSK2, ribosomal S6 kinase 2; SW/SNF, mating switching and sucrose non-ferment plex; UTR, untranslated region; XH2, X-linked helicase 2.

EPIGENETICS 'Pathogenetic Mechanisms'

EPIGENETICS

'Cancer: genomic and epigenetic disorder'

Hypomethylation

- ✓ Over-expression of oncogenes
- ✓ Reactivation of transposons
- ✓ Chromosome instability

Hypermethylation

- ✓ Silencing of tumor suppressors
- ✓ Silencing DNA repair genes (es. MLH2, MGMT)
- ✓ CIMP (CpG Island Methylator Phenotype) (glioma, ca colon)

Epigenetic markers open new avenues for an early detection, diagnosis, prognosis as well as therapeutic targets in cancer.

EPIGENETICS 'Signatures of glioma'

✓ MGMT promoter methylation

✓ G-CIMP

Genetic markers

- 1p/19q codeletion in oligodendroglioma
- IDH1/2 mutation in high grade glioma

The New England Journal of Medicine

© Copyright, 2000, by the Massachusetts Medical Society

VOLUME 343

NOVEMBER 9, 2000

NUMBER 19

INACTIVATION OF THE DNA-REPAIR GENE *MGMT* AND THE CLINICAL RESPONSE OF GLIOMAS TO ALKYLATING AGENTS

MANEL ESTELLER, M.D., PH.D., JESUS GARCIA-FONCILLAS, M.D., PH.D., ESTHER ANDION, B.SC., STEVEN N. GOODMAN, M.D., PH.D., OSCAR F. HIDALGO, M.D., VICENTE VANACLOCHA, M.D., STEPHEN B. BAYLIN, M.D.,

Conclusions Methylation of the *MGMT* promoter in gliomas is a useful predictor of the responsiveness of the tumors to alkylating agents. (N Engl J Med 2000; 343:1350-4.)

Table 3 MGMT promoter methylation in various human gliomas				
Reference	MGMT methylation frequency*	Clinical significance of MGMT promoter methylation		
Anaplastic astrocytoma				
Wick et al. (2009) ¹⁶	50% (48/96)	Prolonged PFS and overall survival in response to radiotherapy or chemotherapy with temozolomide (5/28) or PCV; phase III trial		
Anaplastic oligoastrocytoma				
Brandes <i>et al.</i> (2006) ⁸³	69% (37/54)	No prognostic significance in recurrent oligoastrocytoma or oligodendroglioma treated with temozolomide (5/28)		
Wick et al. (2009) ¹⁶	71% (53/75)	Prolonged PFS and overall survival in response to radiotherapy or chemotherapy with temozolomide (5/28) or PCV; phase III trial		
Anaplastic oligodendroglioma				
Wick et al. (2009) ¹⁶	71% (22/31)	Prolonged PFS and overall survival in response to radiotherapy or chemotherapy with temozolomide (5/28) or PCV; phase III trial		
Anaplastic oligodendroglioma and anaplastic oligoastrocytoma without necrosis				
van den Bent <i>et al.</i> (2009) ¹⁷	84% (81/97)	Prolonged PFS and overall survival in response to radiotherapy alone or radiotherapy plus chemotherapy with PCV; phase III trial		
Anaplastic oligoastrocytoma with necrosis (glioblastoma)				
van den Bent <i>et al.</i> (2009) ¹⁷	73% (29/40)	No prolonged PFS and overall survival in response to radiotherapy alone or radiotherapy plus chemotherapy with PCV; phase III trial		
Recurrent anaplastic astrocytoma or oligoastrocytoma and glioblastoma				
Sadones et al. (2009) ⁵¹	26% (10/38)	Prolonged overall survival in response to temozolomide (5/28 or 1 week–1 week off) in anaplastic astrocytoma and oligoastrocytoma		
Grade II astrocytoma				
Komine <i>et al.</i> (2003) ⁶³	43% (21/49)	Decreased PFS with no treatment or radiotherapy or interferon		
Grade II oligodendroglioma and oligoastrocytoma				
Everhard et al. (2006) ⁶⁵	93% (63/68)	Prolonged PFS in patients with oligodendroglioma ($n=42$), oligoastrocytoma ($n=18$) or astrocytoma ($n=8$) treated with temozolomide		
Kesari et al. (2009) ⁶⁴	60% (12/20)	Prolonged PFS and OS in patients treated with temozolomide (11 weeks on-4 weeks off); phase II trial		
*MGMT promoter methylation analysis performed by gel-based methylation-specific PCR, except studies by Sadones et al. (quantitative methylation-specific PCR) ⁵¹ and van den Bent et al. (methylation-specific multiplex ligation-dependent probe amplification.) ¹⁷ Abbreviations: 5/28, 5 out of 28 days; PFS, progression-free survival; PCV, combination of procarbazine, CCNU (lomustine) and vincristine.				

Weller, M. *et al.* (2009) *MGMT* promoter methylation in malignant gliomas: ready for personalized medicine? *Nat. Rev. Neurol.* doi:10.1038/nrneurol.2009.197

O⁶-methylguanine-DNA methyltransferase (*MGMT*) 'function'

- Maps at chromosome 10q26
- 5 exons
- CpG island at the 5' of the gene (containing 98 CpG sites)

The protein removes alkyl groups from

the O⁶-position of G by an irreversible

transfer of the alkyl group to a Cystein at

its active site.

G in the DNA is thereby restored and

MGMT sentenced to proteasome-

mediated degradation.

MGMT 'Function'

Because of the stoichiometry of the reaction and the unavoidable fate of the MGMT protein, the repair capacity of a cell depends on the amount of MGMT molecules in the nucleus and the cell capability of re-synthesis.

Failure to repair the O6-alkylguanine (O⁶-AG) DNA adducts increases mutagenic potential during replication:

1)O⁶-AG can be mistaken for adenine and mismatched with thymine, **giving rise** to a G:C to A:T transition mutation.

2)The adducts show a cytotoxic potential by causing DNA double-strand breaks.

MGMT 'CpGs structure'

GCGC

CTTCTGGTGGCTTGCAGGTGCAGCCCTCCAATCCTCCTCCCCAAGCGGCCTTCTGCCTATAAGGACACGAGTCATACTGGATGAGGGGCCCACTA
attgatggcttctgtaaagtccccatctccaaataaggtcacattgtgaggtactgggagttaggactccaacatagcttctctggtggacacaa
TTCAACTCCTAATAACGTCCACACACACCCCAAGCAGGGCCTGGCACCCTGTGTGCTCTCTGGAGAGCGGCTGAGTCAGGCTCTGGCAGTGTCTAG
GCCATCGGTGACTGCAGCCCTGGACGGCATCGCCCACCACGGCCCTGGAGGCCTGCCCCCCGGCGCCCTGACAGGGTCTCTGCTGGTGGGG
000000000000000000000000000000000000000
GTCCCTGACTAGGGGAGCGGCACCAGGAGGGGGGGGGGG

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
ACCORCATTTGGCAAACTAAGGCACAGAGCCTCAGGCGCGCGAAGCTGGGAAG GCACAGGGCAGCGCGCGCGCGGGGGGGGGG
CATCCCCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCC
TOTTTACT TITTET A GATE TITAGET TAGE CONTACT A GATE TAGE CONTACT A
ATGCTGGGACAGCCCCTAGATCGCTTTGCGTCCCGACGCCCCCCCC
ECCTCCCCCCAAGAGTCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCGACCCACCCATCCCCGCCGCGCCACCTCCACGTCGCCCCAAGTG- 15

- - MGMT promoter region
- Upstream highly methylated region (100% methylation) ----
- Upstream highly methylated region (50% methylation) -
- Downstream highly methylated region (100% methylation) ****
 - CpG site

MGMT exon 1

Enhancer region

Minimal promoter region

Overlap exon 1 & enhancer region

CpG site with best correlation methylation & expression

MGMT 'the methylation test'

Sequence analyzed is located within the contig GRCh37.p2, on chromosome 10 (gi|224514688:2268342-4574265). NCBI Reference Sequence: NT_008818.16

10 CpGs analyzed

GCCCCGGATATGCTGGGACAGCCCGCGCCCCTAGA<mark>AC</mark>GCTTTG<mark>C</mark>GTC<mark>CC</mark>GA<mark>C</mark>GCCCGCAGGTCCTCGGCGGCGCGCACC GTTTGCGACTTGGTGAGTGTCTGGGTCGCCTCGCTCCCGGAAGAGTGCGGAGCTCTCCCTCGGGACGGTGGCAGCCT CGAGTGGTCCTGCAGGCGCCCTCACTTCGCCGTCGGGTGTGGGGCC

Pyrosequencing vs MS-PCR

Most of cases showing <20% of methyl. (pyrosequencing) resulted unmethyl (MS-

Pyrosequencing is more reliable respect to MS-PCR

PCR)

Normal brain (20 cases): 3±1.2 (%)

Glioma cell line (unmethylated)

Assay: MGMT METH seq1 Sample ID: G6

Note:

Glioma cell line (methylated)

Assay: MGMT METH seq1 Sample ID: G7 Note:

Glioma sample (methylated)

Assay: MGMT METH seq1 Sample ID: G9

Intermediate MGMT methylation levels in glioma. WHY?

Normal cell contamination?

Glioblastoma multiforme MGMT methylation: 20%

Intermediate MGMT methylation levels in glioma. WHY?

Normal cell contamination?

No, or not always associated with normal cell contamination

Additional genetic/genomic events?

The methylation levels in a single cell....

Intermediate MGMT methylation levels in glioma. WHY?

Concurrent genomic events (chr10q deletion, inactivation

MGMT point mutations) should be considered for a better

understanding of methylation levels.

The relationship between methyl level and gene expression is not obvious!

The next future... 'The Glio*Map*'

R. Martinez, M. Esteller / Neurobiology of Disease 39 (2010) 40-46

Transformed astrocytes

A comprehensive screen of somatic genetic and epigenetic lesions and constitutive polymorphisms: a useful clinical research tool for glioma patients.

✓MGMT methyl is a common and early event in glioma;

✓ Pyrosequencing allows a higher detection rate respect to MS-PCR

✓ Unmethylated tumors tend to progress;

✓ Methylation levels tend to increase;

✓ The effect (drug response) of intermediate methylation should

be investigated considering other concurrent pathogenetic

events (10q deletions, point mutations).

Thank You!!!

Eleonora Bonaparte, PhD

Claudia Augello, PhD Silvia Tabano,

PhD

Silvia Sirchia, PhD

Patrizia Colapietro, Technician

Ma<mark>ria</mark>rosaria Calvello, MD

Prof. Silvano Bosari, MD

FONDAZIONE IRCCS CA' GRANDA Ospedale Maggiore Policlinico