3^{III} ANNUAL COURSE OF PHARMACOGENETICS AND PERSONALIZED MEDICINE

Emerging pathways in Personalized Medicine: breaking barriers and moving forward

Molecular alteration in thyroid cancers.

F. Basolo

Thursday 9th - Friday 10th February 2012 Aula Magna Sapienza University of Roma

MOLECULAR GENETICS OF THYROID CANCERS

SOMATIC GENETIC ALTERATIONS

DIFFERENTIAL GENE EXPRESSION

Somatic genetic alteration

Differential gene expression

Proteomic

Metabolomic

DIAGNOSIS

Pre-operative differential diagnosis

THYROID-TUMOR

MARKERS (TT

Pre- and post-operative follow-up

Surgery

Unconventional therapy, tailored drugs

ROLE OF BRAF STATUS

BRAF MUTATION and PTC variants 2,192 PTCs

BRAF MUTATION and infiltration

BRAF mutation and lymphnode metastasis

DIAGNOSIS

Possible diagnostic role of BRAF mutation: Its importance in PREOPERATIVE CYTOLOGY

0021-972X/04/815.00/0 Printed in U.S.A.

The Journal of Clinical Endocrinology & Metabolism 89(10):5175-5180

2003

Copyright © 2004 by The Endocrine Society doi: 10.1210/jc.2003-082221

Analysis of BRAF Point Mutation and RET/PTC Rearrangement Refines the Fine-Needle Aspiration Diagnosis of Papillary Thyroid Carcinoma

GIULIANA SALVATORE, RICCARDO GIANNINI, PINUCCIA FAVIANA, ALESSIA CALEO, ILENIA MIGLIACCIO, JAMES A. FAGIN, YURI E. NIKIFOROV, GIANCARLO TRONCONE, LUCIO PALOMBINI, FULVIO BASOLO, AND MASSIMO SANTORO

Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche and Dipartimento di Biologia e Patologia Cellulare e Molecolare (G.S., M.S.), and Dipartimento di Scienze Biomorfologiche e Funzionali (A.C., I.M., G.T., L.P.), University 'Federico II,' 80131 Napoli, Italy; Dipartimento di Oncologia (R.G., P.F., F.B.), University of Pisa, 56126 Pisa, Italy; and Department of Pathology and Laboratory Medicine and Division of Endocrinology (J.A.F., Y.E.N.). University of Cincinnati, Cincinnati, Ohio 45267

Several studies have been conducted to evaluate the diagnostic applicability of *BRAF* mutation detection on FNAB specimens with a result of inadequate (class1) or follicular neoplasm (class 3) or suspicious for malignancy (class 4).

Possible diagnostic role of BRAF mutation

FRONTIERS IN THYROID CANCER

THYROID Volume 19, Number 12, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/thy.2009.0240

Molecular Diagnostics and Predictors in Thyroid Cancer

Marina N. Nikiforova and Yuri E. Nikiforov

TABLE 3. ROLE OF MOLECULAR TESTING OF FINE-NEEDLE ASPIRATION WITH INDETERMINATE CYTOLOGY IN REFINING CANCER PROBABILITY IN THYROID NODULES

Category of indeterminate cytology	Molecular testing result	Cancer probability (%)
Follicular lesion of indeterminate significance $(n = 21)$	Mutation positive $(n=3)$	100
0 . ,	Mutation negative $(n = 18)$	0
Follicular of Hürthle cell neoplasm $(n = 23)$	Mutation positive $(n = 9)$	100
	Mutation negative $(n = 14)$	21
Suspicious for malignancy $(n = 7)$	Mutation positive $(n=3)$	100
6 - 7 (·)	Mutation negative $(n=4)$	50
Total $(n = 51)$	Mutation positive $(n = 15)$	100
	Mutation negative $(n=36)$	14

Based on the data reported by Nikiforov et al. (74).

of the 581 *BRAF*-positive nodules tested in various types of FNA samples are papillary carcinomas, with a false-positive rate of 0.2%. Importantly, a significant proportion (15–39%) of *BRAF*-positive FNA samples in many of these studies were indeterminate or nondiagnostic by cytology, demonstrating that testing for *BRAF* is helpful in establishing the definitive diagnosis of cancer in nodules with indeterminate cytology (74,78,81,84,85,89). In addition, several FNA samples with

Impact of Proto-Oncogene Mutation Detection in Cytological Specimens from Thyroid Nodules Improves the Diagnostic Accuracy of Cytology

Silvia Cantara, Marco Capezzone, Stefania Marchisotta, Serena Capuano, Giulia Busonero, Paolo Toti, Andrea Di Santo, Giuseppe Caruso, Anton Ferdinando Carli, Lucia Brilli, Annalisa Montanaro, and Furio Pacini

Department of Internal Medicine, Endocrinology, and Metabolism and Biochemistry, Section of Endocrinology and Metabolism (S.Can., M.C., S.M., S.Cap., G.B., L.B., A.M., F.P.), Department of Human Pathology and Oncology (P.T., A.D.S.), Unit of Otorinolaringoiatry (G.C.), and Department c Surgery and Bioengineering (A.F.C.), Section of Surgery, University of Siena, 53100 Siena, Italy

J Clin Endocrinol Metab, March 2010, 95(3):1365–1369

Cytology (n=235)	Mutation (in cytology)	Histology
Suspicious	BRAF 21	PTC 21
for	RET/PTC 8	PTC 6
cancer	RAS 10	PTC 10
(n=54)	None 17	PTC 9 FA 4 Hyperplastic 4
	BRAF 2	PTC 2
	RET/PTC 2	PTC 2
Benign	RAS 5	PTC 2 FA 3
(87)	None 78	PTC 2 FTC 1 FA 10 Hyperplastic 65
	BRAF 2	PTC 2
	RET/PTC 2	PTG 2
ndetermin	RAS 3	PTC 2 FA1
(n=41)	None 34	PTC 1 FA 25 Hyperplastic B
	BRAF 8	PTC 8
	RET/PTC 1	PTC 1
nadequate	RAS 5	PTC 2 HCC 1 FA 2
(n=53)	None 39	PTC 2 FTC 2 FA 11 Hyperplastic 24

TABLE 1. Diagnostic performance of cytology, molecular analysis, or a combination of both

Diagnostic modality	Sensivity TP/TP+FN (%)	Specificity TN/FP+TN (%)	PPV TP/TP+FP (%)	NPV TN/TN+FN (%)	Accuracy TP+TN/All (%)
Cytology (positive for malignancy)	59.0	94.9	85.2	82.3	83.0
Molecular analysis (mutation in malignancy) ^a	78.2	96.2	91.0	89.9	90.2
Molecular analysis (mutation in malignancy) ^b	79.8	100	100	89.9	92.8
Cytology and molecular analysis ^a	89.7	94.9	89.7	94.9	93.2
Cytology and molecular analysis ^b	90.5	98.7	97.4	94.9	95.7

ATA Guidelines

THYROID Volume 19, Number 11, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/thy.2009.0110 ORIGINAL STUDIES, REVIEWS, AND SCHOLARLY DIALOG THYROID CANCER AND NODULES

Revised American Thyroid Association Management Guidelines for Patients with Thyroid Nodules and Differentiated Thyroid Cancer

> The American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer

David S. Cooper, M.D.¹ (Chair)^{*}, Gerard M. Doherty, M.D.,² Bryan R. Haugen, M.D.,³ Richard T. Kloos, M.D.,⁴ Stephanie L. Lee, M.D., Ph.D.,⁵ Susan J. Mandel, M.D., M.P.H.,⁶ Ernest L. Mazzaferri, M.D.,⁷ Bryan McIver, M.D., Ph.D.,⁸ Furio Pacini, M.D.,⁹ Martin Schlumberger, M.D.,¹⁰ Steven I. Sherman, M.D.,¹¹ David L. Steward, M.D.,¹² and R. Michael Tuttle, M.D.¹³

72). Recent large prospective studies have confirmed the ability of genetic markers (BRAF, Ras, RET/PTC) and protein markers (galectin-3) to improve preoperative diagnostic accuary for patients with indeterminate thyroid nodules (69,73,74). Many of these markers are available for commercial use in reference laboratories but have not yet been widely applied in clinical practice. It is likely that some combination of molecular markers will be used in the future to optimize management of patients with indeterminate cytology on FNA specimens.

NEW METHODS FOR THE IDENTIFICATION OF GENETIC ALTERATIONS

MassARRAY[®]– System Components

SEQUENOM[®] **OncoCarta[™]Panel** v1.0

Identify diverse mechanisms behind cancer genomics by rapid, parallel analysis of 235 simple and complex mutations across 19 common oncogenes.

Sequenom's OncoCarta[™] Panel is a set of predesigned and pre-validated SNP assays for costeffective, efficient mutation screening.

- Use tumor samples from fresh. ٠ frozen, or formalin fixed, paraffin embedded tissues (FFPE) and/or cell lines.
- Analyze 238 mutations with as little as 500 ng DNA per sample.
- Detect and quantify mutation frequencies from <10 - 100%.

ABL-1	JAK-2
AKT-1	KIT
AKT-2	MET
BRAF	H-RAS
CDK-4	K-RAS
EGFR	N-RAS
ERBB2	PDGFα
FGFR-1	PIK3CA
FGFR-3	RET
FLT-3	

See back for complete list of mutations.

Disclaimer: OncoCarta³⁴ Is for Research Use Only. Not for use in diagnostic procedures.

©2008 Sequenom Inc. All rights reserved.

CCGATGATCGACCAGTATGCG0 GCGCATTATGCGCATGATGATCGAAGCCGA **Available Now** GCGCATTATGCGCGCATGATGATCGAAGTATCAT GTATCATGATGATCGAAGCCGATGAGTATCATG

www.sequenom.com

Sequenom Inc. 3595 John Hopkins Ct San Diego, CA 92121

USA:	1 877 4GENOME
EU:	(+49) 40-899676-0
AP:	(+61) 7 3845 3691

SEQUENOM[®] OncoCarta[™] Assay Panel v1.0

Analysis Method

PCR amplification and primer extension are performed using the OncoCarta[™] Assay Panel reagents. The panel consists of 24 multiplexed assays that are run on each sample using 20 ng of input DNA per assay from either fresh, frozen or FFPE tissues or cells. After the sample run, mutations are detected and guantified. Up to 32 samples (2 x 384 chips) can be processed per day, and the panel reagents are sufficient for 160 samples.

Materials Provided

- OncoCarta[™] PCR Primers
- OncoCarta™ Extend Primers
- PCR Reagent Set
- TypePLEX™ Reagent Set
- Software Add-on

Equipment and Software Needed

- MassARRAY[®] Compact System
- NanoDispenser
- TYPER 4.0 Software

For ordering information, contact your sales representative or email oncocarta@sequenom.com

Oncogene	Mutations Detected with the OncoCarta Assay Panel v1.0
ABI-1	G2506, Q252H, V253H, V253F, E255K, E255V, D276G, F311L, T315U, F317L, M351T, E355G, F359V, H396R
AK7-1	V461L, PSE8T, L557T, E519G, V167A, Q45X, E17del
AKT-2	\$302G, R371H
BRAF	G161R, G164WE, G365R, F168C, G169S, G469E, G469A, G469V, G469R, 9469R, D594WG, F595L, G596R, L597S, L597R, L597D, L597V, T599I, V900E, V900K, V900R, V900L, K901N, K901E
CDX-4	R24C, R24H
CGFR	R100K, T263P, A289V, 6558V, FT09H,H1, FT05A/G/V, G7195/C, G713A, M78e, Z18Timedu, S78BU, V18e, D77Dima53U, V18e, D77XimetV, D770, J773-AACQ/V140, D770ea56V/V756, D77XimetV, D770, J773-AACQ/V140, D774, C473imetV, J773-V18PV, H775, V778imetPH/FH4H, V774, C473imetV, J780M, L188B, L181D, E745, T751adel, E745, A750del, E746, T753del, E746, T753del, 5752D, L147, S173-e4, P7354, A750H, J7514, J7514, J7514, L147, S152adel, J747, J750ek, L1947, J75146, L1947, J75146, S752, J750del, L747, J750ek, J7514, J7514, J7514, J7514, L746, J750del, J7514, Origin, J7514, J7514, J7514, J7514, L746, J750del, J7514, Origin, L747, J752del, Q1mc (combined), L747_J750del, Pinc (combined), L747_S752del, Q1mc (combined),
EN882	L755P, 07765/LC, 0776VC/VC, A775_0776ina1VIMA, P780_Y781ina0SP, P780_Y781ins65P, 5779_P780insV65
F6FR-1	\$1251, #252T
FOFR-3	G370C, Y373C, A391E, K550Q/E, K550T/M
ALT-S	USBciel, DUSSH/Y
JAK-2	V0177
RIT	DS3N, VS03_F504i=aAV, WS557JI,IV,C, VS501,VX501, VS501, VS502, VS K559_K558_del, K558_V560del, K558_E562del, V5594el, V559_V560del, V590del, Y37_L578del, E591JK, L578P, F383P, D5194el, K562Z, D8180, D3154PV, V125A, E1391, M552L, V5820, F5845, P551_V553del, T333_Q333del
MET	R97DC, T992I, Y123DC, Y123SD, M1250T
PDGFRa	V561D, T674I, F808L, D846Y, N8705, D1071N, D842_H845del, 1843_D849del, 5566_E571xK, 1843_5847xT, D842v
PHESCA	R88D, N345K, C420R, P530R, E542K, E545K, Q546K, H701R, H1047R, L H1047K, R38H, C901F, M1043I
H-RA3	G12V/D, G15C/R/3, Q81H/R, Q81L/R/P, Q81K
K-RAS	G12C, G12R, G12S, G12V, G12D, G12A, G12F, G13W/D, A59T, Q61E/K, Q61L/R/P, Q61H/H
N-RAS	G12v//A/D, G12C/R/S, G13V/A/D, G13C/R/S, A18T, Q61L/R/R, Q61H, Q61E/K
RET	C654R. C654W. C654Y. E052_1655del. M918T. A664D

CCGATGATCGACCAGTATGCGCATGATGATCGAA GCGCATTATGCGCATGATGATCGAAGCCGATGATCGAC **GCGCATTATGCGCGCATGATGATCGAAGTATCATGATGA** GTATCATGATGATCGAAGCCGATGAGTATCATGATG/

Sequenom Inc. 3595 John Hopkins Ct San Diego, CA 92121

USA: 1 877 4GENOME EU: (+49) 40-899676-0 AP: (+61) 7 3845 3691

www.sequenom.com

Oncogenes Included in

the OncoCarta[™] Panel:

OncoCarta™ v1.0	235 Mutations in 19 Genes
OncoCarta™ v2.0	152 Mutations in 18 Genes
OncoCarta™ v3.0	157 Mutations in 26 Genes
MelaCarta™ v1.0	72 Mutations in 20 Genes

535 Mutations in 51 Oncogenes & Tumor Suppressor Genes For lung, colon, skin, breast

PROGNOSIS

Laboratory Research

Presence of *BRAF* V600E in Very Early Stages of Papillary Thyroid Carcinoma

Clara Ugolini,¹ Riccardo Giannini,¹ Cristiana Lupi,¹ Giuliana Salvatore,² Paolo Miccoli,¹ Agnese Proietti,¹ Rossella Elisei,³ Massimo Santoro,² and Fulvio Basolo¹

BRAF(V600E) may be found in Incidental Microcarcinoma (IM) despite their extremely small (<1mm) size.

We recognize that this is not a formal demonstration that IM can evolve in clinical PTC, but on the basis of our data and on a practical point of view, patients with BRAF(V600E) IM may need to be managed more carefully than patients affected by a mere benign condition.

BRAF MUTATION and PTC variants 2,192 PTCs

EXTENSIVE CLINICAL EXPERIENCE

Association of BRAF V600E Mutation with Poor Clinicopathological Outcomes in 500 Consecutive Cases of Papillary Thyroid Carcinoma

Cristiana Lupi, Riccardo Giannini, Clara Ugolini, Agnese Proietti, Piero Berti, Michele Minuto, Gabriele Materazzi, Rossella Elisei, Massimo Santoro, Paolo Miccoli, and Fulvio Basolo

Departments of Surgery (C.L., R.G., C.U., A.P., P.B., M.M., G.M., P.M., F.B.) and Endocrinology (R.E.), University of Pisa, 56126 Pisa, Italy; and Dipartimento di Biologia e Patologia Cellulare e Molecolare (M.S.), Istituto di Endorrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, University Federico II, 80131 Naples, Italy

The Journal of Clinical Endocrinology & Matabolism 92(11):4085-4090 Copyright © 2007 by The Endocrine Society doi: 10.1210/jc.2007-1179

			BRAF V600E-posi	tive cases			
	Total cas	508	PTC ^a	PTC ^a		Micro PTC ^b	
	n (%)	P ^e	n (%)	P^c	n (%)	P^{c}	
Age (yr)							
Younger than 45	108/243 (44.4)	>0.5	68/143 (47.5)	>0.5	40/100 (40)	>0.5	
45 or older	99/244 (40.6)		52/118 (44)		47/126 (37.3)		
Gender							
Male	57/124 (45.9)	>0.5	30/65 (46,2)	>0.5	27/59 (45.7)	>0.5	
Female	157/376 (36.4)		94/205 (45.8)		63/171 (36.8)		
Extrathyroidal invasion							
Yes	82/129 (63.5)	< 0.0001	52/84 (61.9)	0.0004	30/45 (66.7)	< 0.0001	
No	132/371 (35.6)		72/186 (38.7)		60/185 (32.4)		
Multicentricity							
Yes	89/171 (52)	0.0026	58/97 (59.8)	0.0006	31/74 (41.9)	>0.5	
No	125/329 (38)		66/173 (38.2)		59/156 (37.8)		
Nodal metastases							
Yes	34/53 (64.1)	0.0009	27/42 (64.3)	0.0094	7/11 (63.6)	>0.5	
No	180/447 (40.2)		97/228 (42.5)		83/219 (37.9)		
Class ^d							
I	124/357 (34.7)	<0.00001	67/177 (37.8)	0.001	57/180 (31.7)	< 0.00001	
п	9/15 (60)		6/9 (66.7)		3/6 (50)		
III	81/127 (63.7)		51/83 (61.4)		30/44 (68.2)		
Encapsulated ^e							
Yes	30/138 (21.7)	< 0.0001	19/81 (23.4)	< 0.0001	11/57 (19.3)	0.0004	
No	184/362 (50.8)		105/189 (55.6)		79/173 (45.7)		

2008

BRAF^{V600E} Mutation and Outcome of Patients with Papillary Thyroid Carcinoma: A 15-Year Median Follow-Up Study

Rossella Elisei, Clara Ugolini, David Viola, Cristiana Lupi, Agnese Biagini, Riccardo Giannini, Cristina Romei, Paolo Miccoli, Aldo Pinchera, and Fulvio Basolo

Departments of Endocrinology and Metabolism (R.E., D.Y., A.B., C.R., A.P.), and of Surgery (P.M., C.U., C.L., R.G., F.B.), University Hospital of Pisa, 56100 Pisa, Italy; and AMBISEN Center (A.P.), High Technology Center for the Study of the Environmental Damage of the Endocrine and Nervous Systems, University of 76a, 56124 Pisa, Italy

J Clin Endocrinol Metab, October 2008, 93(10):3943-3949

Correlation between the *BRAF* V600E Mutation and Tumor Invasiveness in Papillary Thyroid Carcinomas Smaller than 20 Millimeters: Analysis of 1060 Cases

Fulvio Basolo, Liborio Torregrossa, Riccardo Giannini, Mario Miccoli, Cristiana Lupi, Elisa Sensi, Piero Berti, Rossella Elisei, Paolo Vitti, Angelo Baggiani, and Paolo Miccoli

Departments of Surgery (F.B., L.T., R.G., C.L., E.S., P.B., P.M.), Experimental Pathology B.M.I.E., Biostatistics Research Unit (M.M., A.B.), and Endocrinology (R.E., P.V.), University of Pisa, 56126 Pisa, Italy

J Clin Endocrinol Metab, September 2010, 95(9):4197-4205

 TABLE 2. Correlation between BRAF V600E mutation and clinical-pathological features in 1047 cases of PTCs

 20 mm or smaller

	BRAF V600E			Statistical
Clinical-pathological features	positive, n (%)	P value	OR (95% CI)	power (1–β)
Age at diagnosis ^a				
Patients <45 yr (n = 544)	269 (49.4)	0.006	0.71 (0.55 to 0.90)	>0.95
Patients ≥45 yr (n = 497)	203 (40.8)			
Gender				
Male (n = 252)	121 (48.0)	>0.05	1.16 (0.88 to 1.54)	<0.7
Female (n = 795)	352 (44.3)			
Tumor size				
≤10 mm (n = 578)	229 (39.6)	0.0001	1.65 (1.29 to 2.11)	0.99
11–20 mm (n = 469)	244 (52.0)			
Multifocality				
Yes (n = 400)	210 (52.5)	<0.0001	1.61 (1.26 to 2.07)	0.99
No (n = 647)	263 (40.6)			
Presence of turnor capsule				
Yes (n = 324)	94 (29.0)	<0.0001	2.70 (2.04 to 3.57)	0.99
No (n = 723)	379 (52.4)			
Extrathyroidal extension/pT				
Yes/pT3 (n = 311)	210 (67.5)	<0.0001	3.74 (2.82 to 4.95)	0.99
No/pT1 (n = 736)	263 (40.6)			
Lymph node metastasis				
Yes (n = 186)	127 (68.3)	<0.0001	3.20 (2.29 to 4.49)	0.99
No (n = 861)	346 (40.2)			
AJCC stages ^a				
l (n = 905)	376 (41.5)	<0.0001	3.38 (2.28 to 5.00)	0.99
III/IV (n = 142)	96 (67.6)			

2010

SEPTEMBER 2010 · VOLUME 95 · NUMBER 09

THE JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM

CI, Confidence interval.

^a In six cases, age at diagnosis was unknown.

¹⁰ The neoplasm with the greatest size or the highest pT status has always been analyzed in the presence of multifocality.

Correlation between the *BRAF* V600E Mutation and Tumor Invasiveness in Papillary Thyroid Carcinomas Smaller than 20 Millimeters: Analysis of 1060 Cases

Fulvio Basolo, Liborio Torregrossa, Riccardo Giannini, Mario Miccoli, Cristiana Lupi, Elisa Sensi, Piero Berti, Rossella Elisei, Paolo Vitti, Angelo Baggiani, and Paolo Miccoli

Departments of Surgery (F.B., L.T., R.G., C.L., E.S., P.B., P.M.), Experimental Pathology B.M.I.E., Biostatistics Research Unit (M.M., A.B.), and Endocrinology (R.E., P.V.), University of Pisa, 56126 Pisa, Italy

J Clin Endocrinol Metab, September 2010, 95(9):4197-4205

MODERN PATHOLOGY (2011), 1-10

npg

CXCR4 expression correlates with the degree of tumor infiltration and *BRAF* status in papillary thyroid carcinomas

Liborio Torregrossa^{1,4}, Riccardo Giannini^{1,4}, Nicla Borrelli¹, Elisa Sensi¹, Rosa Marina Melillo², Pietro Leocata³, Gabriele Materazzi¹, Paolo Miccoli¹, Massimo Santoro² and Fulvio Basolo¹

¹Dipartimento di Chirurgia, Università di Pisa, Pisa, Italy; ²Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, Napoli, Italy and ³Dipartimento di Scienze della Salute, Università dell'Aquila, L'Aquila, Italy

CXCR4 expression was evaluated by immunohistochemical staining and semi quantitative real time RT-PCR together with BRAF mutational status in a consecutive series of 200 papillary thyroid carcinomas.

CXCR4 expression correlates with the degree of tumor infiltration and *BRAF* status in papillary thyroid carcinomas

Liborio Torregrossa^{1,4}, Riccardo Giannini^{1,4}, Nicla Borrelli¹, Elisa Sensi¹, Rosa Marina Melillo², Pietro Leocata³, Gabriele Materazzi¹, Paolo Miccoli¹, Massimo Santoro² and Fulvio Basolo¹

¹Dipartimento di Chirurgia, Università di Pisa, Pisa, Italy; ²Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, Napoli, Italy and ^aDipartimento di Scienze della Salute, Università dell'Aquilo, Italy

Clinical–pathological features	CXCR4 FSS (P value)	CXCR4 z score (P value)
PTC variants	0.0181	NS
Lymph node metastasis	0.0310	
Degree of neoplastic infiltration	0.0015	0.0173
AJCC stages	NS	а
Lymphocytic thyroiditis	NS	NS
BRAF status	0.0000	0.0002

Abbreviations: AJCC, American Joint Commission on Cancer; FSS, final staining score; NS, not significant; PTC, papillary thyroid carcinoma.

^aNot significant in univariate analysis.

CXCR4 expression and BRAF mutation status could cooperatively induce and promote a more aggressive phenotype in papillary thyroid carcinoma via several pathways and specifically increase the tumors' spread outside of the thyroid gland.

npg

UNCONVENTIONAL THERAPY (tailored drugs)

In thyroid cancer drugs such as bevacizumab, sorafenib , sunitinib, axitinib , and motesanib (MOT) have activity <u>as single agents.</u>

BRAF Is a Therapeutic Target in Aggressive Thyroid Carcinoma

BRAF mutation-selective inhibition of thyroid cancer cells by the novel MEK inhibitor RDEA119 and genetic-potentiated synergism with the mTOR inhibitor temsirolimus

Dingxie Liu¹, Joanna Xing², Barry Trink² and Mingzhao Xing¹

¹Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology and Metabolism, Department of Medicine,

The Johns Hopkins University School of Medicine, Baltimore, MD

² Division of Head and Neck Cancer Research, Department of Otolaryngology and Head & Neck Surgery, The Johns Hopkins University School of Medicine,

Baltimore. MD

Int. J. Cancer: 127, 2965-2973 (2010) © 2010 UICC

RDEA119 and temsirolimus

<u>synergistically</u> inhibited cell proliferation and induced cell autophagy in thyroid cancer cells.

Proteomic and metabolomic analysis

Fine-Needle Aspiration of Thyroid Nodules: Proteomic Analysis To Identify Cancer Biomarkers

Laura Giusti," Pietro Iacconi,[§] Federica Ciregia," Gino Giannaccini," Gian Luca Donatini,[§] Fulvio Basolo,[§] Paolo Miccoli,[§] Aldo Pinchera,[†] and Antonio Lucacchini^{*,#}

Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, Department of Surgery, Department of Endocrinology and Metabolism, Environment and Endocrine and Nervous Systems High Technology Center for the Study of the Effects of Harmful Agents, University of Pisa, Pisa, Italy

> Journal of Proteome Research 2008, 7, 4079–4088 4079 Published on Web 07/30/2008

A B C

METABOLOMICS IN CANCER

Previous studies have demonstrated that metabolomic analysis can distinguish between cancer and non-cancer tissues

METABOLOMICS IN THYROID CANCER

	MATERIALS	
1° STEP	NON-TUMORAL vs TUMORAL TISSUES 10-25 mg of fresh tissue	
2° STEP	BENIGN vs MALIGNANT TUMORAL TISSUES	(high re nu
3° STEP	BENIGN vs MALIGNANT FNABs 2-3 mg of fresh tissue	OGRESS
Ļ		

METHODS

HRMAS NMR

(high resolution magic angle spinning nuclear magnetic resonance)

PRELIMINARY DATA

NON-TUMORAL *vs* **TUMORAL TISSUES**

<u>Methods</u>: **<u>34</u> samples** were analysed by HRMAS NMR (between 10-25 mg of fresh tissue) (high resolution magic angle spining nuclear magnetic resonance). An OPLS Discriminant Analysis (OPLSDA) was performed on the correlation matrix.

<u>Results</u>: A 1 predictive+1orthogonal OPLSDA component model with Q² = 0.80 enabled us to clearly **discriminate all tumors from the non-tumoral tissues** as shown on the OPLS score plot.

PRELIMINARY DATA

BENIGN vs MALIGNANT TUMORAL TISSUES

Methods: **52** samples from 2 different batches (16+36 biopsies) were analysed by HRMAS NMR.

<u>Results:</u> A 1 predictive + 4 orthogonal OPLSDA component model with Q² =0.61 enabled us to **clearly discriminate all the benign from the malignant tumors** as shown on the OPLS score plot.

Very specific profile of methabolites

OncoCarta™ v1.0	235 Mutations in 19 Genes
OncoCarta™ v2.0	152 Mutations in 18 Genes
OncoCarta™ v3.0	157 Mutations in 26 Genes
MelaCarta™ v1.0	72 Mutations in 20 Genes

535 Mutations in 51 Oncogenes & Tumor Suppressor Genes For lung, colon, skin, breast

CONCLUSIONS

• BRAF IMPORTANCE:

<u>Prognostic</u>

<u>Diagnostic</u> - associated with other IHC or molecular markers

• NEW OPPORTUNITIES Metabolomic analysis

THANK YOU

